
A Parallel Multiclass Support Vector Machine
Author: Ovidiu Fritsch oafritsch@ucdavis.edu

1 Introduction
In this document, we break down Support Vector Machine (SVM) theory and walk through our implementation. 1

2 Theory
An SVM is a tool that classifies data into two or more classes. Consider first a binary, linear SVM. In this formulation, we
assume that there are only 2 classes and that the training data is linearly separable. Suppose we have M training points in N
dimensions: {(x1, y1), (x2, y2), ..., (xM , yM)}, xi ∈ RN , and yi ∈ {+1,−1}. This is the input to the SVM. The output is a
hyperplane, defined by the normal vector w and a scalar b, that best separates the training data. To classify a new point, we
look at which side of the hyperplane the point lies on. Let’s examine this high level description in more detail.

2.1 Primal Problem
The optimal hyperplane is found by optimizing the following quadratic function subject to M linear constraints (See Appendix
A). It is called the Primal Problem.

minP(w, b) = 1

2
w2 subject to yi(w · xi − b) ≥ 1 ∀i. (1)

2.2 Dual Problem
Equation (1) can be solved using commercial quadratic programming algorithms. However, these algorithms are too slow for
large datasets. Therefore, we use the method of Lagrange Multipliers to reformulate the objective. (See Appendix B).

maxL(α) =
∑
i

αi −
1

2

∑
i

∑
j

αiαjxixjyiyj subject to

{
∀i αi ≥ 0,∑
i yiαi = 0.

(2)

2.3 Linear Inseparability
When the input data is linearly inseparable, there is no solution to the above problem. We can either change the model to
accommodate for linearly inseparable data (Soft Margin), or we can transform the data to make it linearly separable (Kernel
Function).

2.3.1 Soft Margin

When data is not linearly separable, there are no such w and b that will satisfy the constraints in (1) ∀i. By introducing
positive slack variables ξi∀i, we allow each sample i to violate its hard margin by ξi. Equation 7 becomes:

min
w,b

1

2
w2 + C

∑
i

ξi subject to yi(w · xi − b) ≥ 1− ξi. (3)

where C controls the penalty of the slack terms. When the soft-margin primal form (3) is converted to the dual form, nothing
changes except the inequality constraint in (2) becomes a box constraint:

0 ≤ αi ≤ C ∀i (4)
2.3.2 Kernel Function

If the data is not linearly separable, then we can apply a function φ to each xi that transforms xi into a higher dimensional
space such that the data is linearly separable. However, computing φ(xi) · φ(xj) is expensive if φ(x) has more dimensions
than x. Kernel functions K(xi, xj) allow us to sidestep this inefficiency because they compute φ(xi) · φ(xj) only in terms of xi
and xj . The objective function in (2) can therefore be written as:

maxL(α) =
∑
i

αi −
1

2

∑
i

∑
j

αiαjK(xi, xj)yiyj (5)

1Code: github.com/ovifrisch/Support-Vector-Machine

1

2.4 Sequential Minimal Optimization
Sequential Minimal Optimization (SMO) is an algorithm that optimizes the dual objective function (5) by optimizing only two
α’s at each iteration. Suppose that in a given iteration, we choose to optimize α1 and α2 from an old set of feasible solutions
αold1 , αold2 , ... , αM . Since

∑
i αiyi = 0,

α1y1 + α2y2 = αold1 y1 + αold2 y2 (6)

Each iteration of SMO finds the constrained (Appendix C) optimum (Appendix D) of α2 and then solves for α1 using (6).
There is a special case in which we cannot solve for the optimal α2 because of division by zero. In this case, we evaluate (5) at
the lower and upper bounds and choose the α2 that maximizes the evaluation. We continue this process of choosing 2 αi’s
until they stop changing within some threshold.

2.5 Heuristics for Choosing Lagrangian to Multiply
At each iteration of SMO, we would ideally like to choose the 2 αi’s whose optimization leads to the largest increase in (5).
The outer loop selects the first αi, then the inner loop selects the second αi that maximizes | E2 − E1 |. The outer loop
alternates between one sweep through all examples and as many sweeps as possible through the non-boundary examples
(those with 0 > αi < C), selecting only the examples that violate the KKT conditions.

3 Python Implementation
3.1 Overall Structure
We have implemented 3 classes: SVC (Support Vector Classification), MPSVM (Multi Process SVM), and SVM (Support
Vector Machine). SVM implements the binary classification task. MPSVM parallelizes the binary classification task by first
partitioning the dataset. For each partition, MPSVM creates a child process that instantiates an SVM object, which is trained
on the partitioned dataset. MPSVM also parallelizes the prediction task. Finally, the class visible to the user is SVC. Whereas
SVM and MPSVM can only classify binary datasets, SVC implements multiclass classification by creating a One vs. Rest
binary sub-classifier for each class. For each sub-classification task, SVC creates a process that instantiates an MPSVM
object to train the sub-classifier. Note that (1) there are two levels of parallelism here, and (2) that each class has two public
functions: fit(x, y) and predict(x). In the following sections we explain the implementation of each class in more detail.

3.2 SVM
fit(x, y) finds the optimal parameters to the dual problem (2) by using SMO. Before running SMO, which makes many
calls to K(xi, yj), we precompute K(xi, yj) for each pair xi, yi in the training set and store it in the Kernel Matrix Ki,j to
speed up the computation.

Next we call smo() which returns the optimal Lagrange Multipliers alphas and the hyperplane intercept b. smo() im-
plements the outer loop of the algorithm. At each iteration, we either loop again over each training example, or over each
non-boundary training example, calling examine_example(i2) where i2 is the index of the example. examine_example(i2)
determines if alphas[i2] is eligible for optimization by checking if the i2th example violates the KKT conditions. If
alphas[i2] is eligible for optimization, then we choose the second training example i1 based on the heuristics in Section
2.5. Finally, we call take_step(i1, i2, E2), which attempts to change alphas[i2] to its clipped optimal value. If this is
successful, then we solve for αnew1 based on Equation (7) and set alphas[i1] = αnew1 . If alphas[i2] is changed, then smo()
increments num_changed, which is reset to 0 at the beginning of the outer loop. smo() terminates when either it has made
a full pass through the training set and num_changed = 0 or when the outer loop has exceeded the maximum number of
iterations, a tuning parameter set by the user.

predict(x) predicts the class of each example xi/ by taking the sign of w> · xi − b. Remember that w =
∑
i αiyixi,

so we use the right side of this equation instead of directly computing w. We optimize this summation by only including the
is whose αi > 0. The corresponding xis are called support vectors because the decision to classify a new sample depends only
on them.

3.3 MPSVM
Both fit(x, y) and predict(x) are parallelized in MPSVM. The user may specify how many processes P to use, but we
limit this to 5. Thus, P = min(5, numProcesses).

fit(x, y) splits the dataset into P partitions. Each process creates its own SVM object and calls fit(x’, y’), where
x’ and y’ are the partitioned data. We facilitate this by using Python’s multiprocessing module, which also provides a
Queue class to facilitate IPC. After each process completes training, we append the trained SVM object to the queue. The
main process waits for all the child processes to terminate before terminating itself.

2

predict(x) uses the classifiers on the queue to predict each xi. Let us first consider the task of predicting a single
xi. fit(x, y) provides P classifiers. We think of each prediction by classifier Pj on xi as a vote for which class xi should
belong to. The class we assign xi to is the one with the most votes. To predict all xi, we split x into P partitions x′ and use
parallelism similar to how we did in fit(x, y). The difference is that instead of placing SVM objects on the queue, we place the
prediction vector y_hat’ for x′. We also include the start index of x’ in x along with y_hat’ because the main process must
reorder each y_hat’ so that the original order is preserved.

3.4 SVC
The SVC class is the interface to the user. It supports both binary and multiclass classification. To do multiclass classification
on N classes, one popular method is to create N binary classifiers where each binary classifier Ci classifies a training example
as either class i or not class i. We use another layer of parallelism here by spawning a new process for each binary classification
task and placing the trained MPSVM classifier on the IPC queue. Since the maximum number of processes is 5 yet the data
may belong to more than 5 classes, we start another sub-classification process (if there are any left) only when an existing one
terminates. This ensures that no more than 5 processes are executing at once.

predict(x) uses each sub-classifier to predict each xi. Consider again the task of predicting a single xi. We use a
similar voting technique as in MPSVM, except we now accumulate votes for each class and take the maximum. Each
sub-classifier either votes for its own class (if it predicts +1) or for all the other classes (if it predicts -1). We use parallelism
here by creating a process for each sub-classifier’s prediction task and using the same logic as in fit(x, y) to ensure only 5
processes execute at a time.

4 Results
We evaluate the performance of our Support Vector Machine by comparing its accuracy and efficiency to scikit-learn’s SVM
library. We also investigate how the performance of our model changes when we vary the distribution of the data set as well
as internal SVM parameters.

Our first dataset consists of 5 dimensional points drawn from one of two normal distributions. We vary the number
of samples and report the time and accuracy of Sklearn’s model (SVC), our model (SVC2), and our model without parallelism
at the MPSVM layer(SVC2’).

scikit-learn’s SVC outperforms our model by less than 5 seconds for data with less than 2000 rows. However, our model
significantly outperforms our model without parallelism. In the Figure on the right, we see that our test set accuracy is
practically as good as scikit-learn’s SVC accuracy.

Our second dataset is the makeCircles linearly inseparable dataset from Sklearn. It’s purpose is to show that we can
accurately classify such data by using Kernel functions. We fix the training size at 1000, vary the kernel functions, and report
the accuracy for SVC and SVC2.

3

As expected, the linear classifier cannot separate the data so the accuracy is low at about 50%. However, the Radial Basis
Function Kernel (rbf) was able to transform the data so to make it linearly separable and thus the accuracy is high (near 100%).

Now, we will see how time and accuracy are affected by increased dimensionality of the datasets while keeping the training
size fixed at 500 samples (Left Figure). We also set the maximum number of iterations parameter to 1000; if we don’t do
this, our model will take too much time on high dimensional data. The data for this example is drawn from two normal
distribution in N dimensions.

In the Right Figure, we vary the separation of the training data and plot the accuracy.

In the figure on the left, we can see the limitations of our model. It performs poorly when the dimensionality of the problem
exceeds 150. This is because the number of iterations exceeds 1000, in which case we terminate the process. This results in a
sub-optimal model and therefore, a weaker accuracy on the test set.

In the figure on the right, we get what we expect. The closer the data from different classes is clustered together, the harder it
is to draw a decision boundary so the lower the accuracy of the prediction.

Finally, we show the efficiency and accuracy of our multiclass classification as a function of the number of classes. We fix the
number of samples at 500, the number of dimensions at 3, and the data separation at 4. We compare 4 classes. SVC and
SVC2 are the same as before. SVC2’ is our model without parallelism at the SVC layer, and SVC2” is out model without
parallelism at the MPSVM layer.

4

In the figure on the left, we can see that parallelism at the SVC layer has a relatively small effect on the training time compared
to parallelism at the MPSVM layer. This is because MPSVM creates exponentially more processes then SVC. For every
process that SVC spawns, MPSVM spawns multiple processes. This means that the majority of the multiprocessing efficiency
comes from MPSVM, which is why we are seeing very poor performance when MPSVM parallelism is removed (yellow line),
and marginally poorer performance when only SVC parallelism is removed (red line). Sklearn (green line) outperforms our
model (blue line) as usual.

On the right, we can see that our SVC2 classifier accurately classifies the data regardless of the number of classes. For this
dataset, Sklearn’s SVC slightly outperforms our SVC2 model.

5 Appendix
A. Derivation of Primal Form
Given w ∈ RN and b ∈ R, all x that satisfy the following equation

w · x− b = 0 (7)

define a hyperplane H in EN . However, we want to separate our training data. So for each xi we impose the following
constraints:

w · x+i − b ≥ +1 (8)

w · x−i − b ≤ −1 (9)

where x+i has yi = +1 and x−i has yi = −1. To make these equations more compact, we include yi ∈ +1,−1:

yi(w · xi − b) ≥ 1 (10)

Points xi such that
yi(w · xi − b) = 1 (11)

are called support vectors and they define hyperplanes H+ and H− that are parallel to H. The optimal hyperplane H
maximizes the distance D between H+ and H−. To obtain an expression for D, we consider two points x+ and x− that lie on
H+ and H−, respectively.

D = (x+ − x−) · w
|| w ||

=
2

|| w ||

(12)

Since || w ||= w>w = w2 and maximizing 2
||w|| is the same as minimizing 1

2 || w ||, our objective is:

min
w,b

1

2
w2 subject to yi(w · xi − b) ≥ 1 ∀i. (13)

5

B. Derivation of Dual Form
Recall that this is the Primal Form:

minP =
1

2
w2 subject to yi(w · xi − b) ≥ 1 ∀i. (14)

The Lagrangian method allows us to combine the constraints of an optimization problem into a new objective function L such
that if p∗ is the optimal value of minimizing P, then L ≤ p∗. Therefore, we want to maximize L. L is given by:

L(α,w, b) = 1

2
w2 −

∑
i

αi(yi(w · xi + b)− 1) (15)

Now we take the partial derivatives of L with respect to w and b:

dL
dw

= w−
M∑
i

αiyjxj

w−
M∑
j

αjyjxj = 0

w =

M∑
j

αjyjxj

dL
db

= −
M∑
j

αiyi

M∑
i

αiyi = 0

(16)

Now by substituting w back into L, we get the dual form of the optimization problem:

=
1

2
(
∑
j

αjyjxj)
2 −

M∑
i

αi(yi((
∑
j

αjyjxj) · xi + b)− 1)

=
1

2

∑
i

∑
j

αiαjxixjyiyj −
∑
i

∑
j

αiαjxixjyiyj −
∑
i

αiyib+
∑
i

αi

=
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjxixj (Remember
∑
i

yiαi = 0.)

(17)

C. Lower and Upper Bounds for αi

Without loss of generality, suppose that we are optimizing α1 and α2, and that y1 and y2 are the classes of x1 and x2. Let
s = y1y2 and γ = αold1 y1 + αold2 y2.

• If s = 1, then γ = ±(αold1 + αold2)

– If | γ |> C, then maxα2 = C, and minα2 = γ − C.
– If | γ |< C, then minα2 = 0, and maxα2 = γ.

• If s = −1, then γ = ±(αold1 − αold2)

– If γ > 0, then minα2 = 0 and maxα2 = C − γ.
– If γ < 0, then minα2 = −γ, and maxα2 = C.

Therefore, the Lower and Upper bounds on α2 are as follows:

• If s = 1, then

L = max(0, γ − C) U = min(γ,C) (18)

• If s = −1, then

L = max(0, γ) U = min(C,C + γ) (19)

6

D. Partial Derivative of L w.r.t αi

Recall the dual objective function in Equation (5):

maxL(α) =
∑
i

αi −
1

2

∑
i

∑
j

αiαjK(xi, xj)yiyj (20)

If we make all αis other than α1 and α2 constant (we can do this because they are constant when we take the dL
dα2

), (20)
becomes:

L = α1 + α2 −
1

2
(y1y2x

>
1 x1α

2
1 + y2y2x

>
2 x2α

2
2 + 2y1y2x

>
1 x2α1α2 + 2(

M∑
i=3

αiyix+ i>)(t1x1α1 + y2x2α2)) (21)

Let K11 = x>1 x1, K22 = x>2 x2, K12 = x>1 x2, and

vj =

M∑
i=3

αiyix
>
i xj

= x>j w
old − αold1 y1x

>
1 xj − αold2 y2x

>
2 xj

= (x>j w
old) + bold − αold1 y1x

>
1 xj − αold2 y2x

>
2 xj

= uoldj = bold − αold1 y1x
>
1 xj − αold2 y2x

>
2 xj

(22)

where uoldj = x>j wold − bold is the output of the decision function under old parameters.

L = α1 + α2 −
1

2
(K11α

2
1 +K22α

2
2 + 2sK12α1α2 + 2y1v1α1 + 2y2v2α2)

= ... skipping some steps ...

=
1

2
(2K12 −K11 −K22)α

2
2 + (1− s+ sK11γ − sK12γ + y2v1 − y2v2)α2

(23)

After some steps, the coefficient of α2 can be expressed as:

α2 = y2(E
old
1 − Eold2)− ηαold2 (24)

where η = K11 +K22 − 2K12. Plugging (24) back into (23), we get:

L =
1

2
ηα2

2 + (y2(E
old
1 − Eold2)− ηαold2)α2 (25)

Finally, the first derivative is:

dL
dα2

= ηα2 + (y2(E
old
1 − Eold2)− ηαold2) (26)

7

	Introduction
	Theory
	Primal Problem
	Dual Problem
	Linear Inseparability
	Soft Margin
	Kernel Function

	Sequential Minimal Optimization
	Heuristics for Choosing Lagrangian to Multiply

	Python Implementation
	Overall Structure
	SVM
	MPSVM
	SVC

	Results
	Appendix

